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Abstract 
 

 Today competing bulk, thin films have garnered an increasing interest as 

alternative form of solid materials that may exhibit enhanced properties and eventually 

numerous possibilities of applications that will influence our everyday life, in: 

medicine, pharmacy, electronics, optics, mechanics (abrasive, hard or impermeable 

coatings), sensing (for gases or for bio-marking), etc. Characterisation and properties of 

surfaces, together with the applications at the nano- and micro-scale of such materials 

have opened a totally different world for the solid state physics. Nanotechnology for 

optoelectronics is targeting always for recent advancements of producing or 

functionalizing nanomaterials and thin films with semiconducting, conducting or 

dielectric properties; novel materials with enhanced stability and functional properties 

are continuously synthesized, possibilities of handling them and solving hot issues 

being thus easier to be addressed. 

 As long as the demand for reduced dimensions and advanced properties of 

materials is continuously increasing, the thin film deposition methods are still in the 

spotlight and undergo unceasing improvement. Of those, physical techniques are more 

appropriate to fulfil such demands; therefore they were widely used, especially as 

laser-based ones.  

In the thesis entitled: „Thermally induced functionalization of thin films of 

molecular materials obtained by laser techniques / Funcţionalizarea indusă termic a 

filmelor subţiri de materiale moleculare obţinute prin tehnici laser”, the study 

regarding the thin film deposition by matrix-assisted pulsed laser evaporation 

(MAPLE) technique was carried out for the three distinct main categories of soft 

molecular materials: inorganic complexes (zinc benzoate, precursor for ZnO), organics 

materials (azoic derivatives with liquid crystalline properties), and polymers for 

optoelectronics (PVC, PAA and PAni). MAPLE regularly, it is possible to observe the 

high degree of comprehensiveness this technique encompasses: it is one of the most 

straightforward and flexible way to obtain reproducible and high quality thin films of 

molecular materials of large interest for various applications. In order to determine the 

stability domains of matter, and the limits of use for the technological processing of 

materials which contains it – that may happen at high temperatures, thermoanalytical 

studies are primarily requested; knowing the kinetic parameters governing their 

transformations represent a very important tool for understanding their dynamic 

structure-behaviour relation, the interactions within components and their 

applicability domains, for predicting the appropriate temperature regimes needed in 

the technological processes, and may be a strong indication when deciding if to use of a 

certain material or another in diverse applications. 

The interconnection between the results of the thermal and kinetic studies, with 

those obtained for the thin films fabricated by MAPLE are evident; the present study 

accomplishes the proposed objectives and brings significant contribution to the 

usefulness of the thin films obtained by MAPLE technique. 
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Chapter 1 
 
Introduction and background 
 

 
The thesis entitled: „Thermally induced functionalization of thin films of 

molecular materials obtained by laser techniques / Funcţionalizarea indusă 

termic a filmelor subţiri de materiale moleculare obţinute prin tehnici laser”, 
has been elaborated at the Department of Physics within the University of 
Craiova, for obtaining the title of Doctor (PhD) in the field of „Physics”. 
Significant experimental research contained in the present thesis was carried 
out also at INFLPR-National Institute for Laser, Plasma and Radiation Physics. 
 

1.1 General overview regarding thin films processing 
 

Today competing bulk, thin films have garnered an increasing interest as 
alternative form of solid materials that may exhibit enhanced properties and 
eventually numerous possibilities of applications that will influence our 
everyday life [1,2], in: medicine, pharmacy, electronics, optics, mechanics 
(abrasive, hard or impermeable coatings), sensing (for gases or for bio-
marking), etc. Characterisation and properties of surfaces, together with the 
applications at the nano- and micro-scale of such materials have opened a 
totally different world for the solid state physics. Nanotechnology for 
optoelectronics is targeting always for recent advancements of producing or 
functionalizing nanomaterials and thin films [3,4] with semiconducting, 
conducting or dielectric properties; novel materials with enhanced stability and 
functional properties are continuously synthesized, possibilities of handling 
them and solving hot issues being thus easier to be addressed.  

 
 

1.5 Motivation for the current project, the main proposed 
objectives, and the present study 
 

In the context when the pulsed laser deposition technique is not 
adequate for obtaining thin films of soft molecular compounds (as mentioned in 
subchapter 1.2), it is however wise to benefit from its remaining advantages (to 
be presented in Chapter 2), and therefore the use of its modified version 
MAPLE (matrix-assisted pulsed laser evaporation) brings novelty and 
enhancement to the methodology and quality of obtaining thin films of such 
materials. Before functionalizing in the form of soft molecular thin films, it is 
impetuous to characterize these materials by thermal analysis and kinetic 
methods, in order to be able to know their stability, to establish the eventual 
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thermal processing conditions, to understand the complexity of their 
transformations with temperature, and to determine the ranges of temperature 
where they may be employed. 

Main proposed objectives: i) finding the appropriate experimental 

parameters for the laser-based depositions; ii) successful employment of the matrix-

assisted pulsed laser evaporation (MAPLE) for the fabrication of thin films of soft 

molecular materials; iii) obtaining reproducible and high quality thin films of inorganic, 

organic and polymeric soft materials of large interest for various applications; iv) 

characterisation of the thermal stability and understanding of the thermal properties of 

the soft materials employed; v) rigorous kinetic study and understanding the complexity 

of the transformations taking place through the entire temperature range; vi) 

determining the thermal processing conditions of some materials and of temperature 

ranges where they will be further employed. 

The interconnection between the results of the thermal and kinetic 
studies, with those obtained for the thin films fabricated by MAPLE are evident; 
the present study accomplishes the proposed objectives and brings significant 
contribution to the usefulness of the thin films obtained by MAPLE technique. 

 

1.6 The structure of the thesis and the brief description of the 

content of each chapter 
 
The thesis is structured in six chapters: five chapters describing the 

thematic under the present context, the premises, the performed experiments, 
the chosen methodology and technology, the implementation of some calculus 
procedures, the physical-chemical characterisation of thin film materials, the 
results and discussions, plus a sixth chapter containing the conclusions and the 
further work proposed.   

Actually, the manuscript is divided into three main parts. The first part, 
formed of the first two chapters, represents a literature survey and a personal 
view upon: the thin films obtaining, the thermal processes and their kinetic 
modelling, and ultimately the thermal processing of materials. The second part 
of the manuscript, composed of the following three chapters, is entirely original 
and comprises the study for reaching and solving the proposed objectives. The 
third part contains the conclusions and further work proposed by the author. 

The present Doctoral/PhD Thesis, elaborated for the purpose of 
obtaining the title of Doctor (PhD) in the field of “Physics”, is an original work 
and contains herein data published by the author in 6 (six) articles from ISI 
ranked journals, of which 5 (five) as first author. Also, 3 (three) works have 
been presented as plenary (1) and invited (2) lectures at international 
conferences and at universities abroad, while other 3 (three) regular works have 
been presented at international conferences. 
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1.7 References to Chapter 1 
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Chapter 2 

 
Theoretical aspects and experimental methods 
 
2.2.3.1 Features of MAPLE deposition technique 

Matrix-assisted pulsed laser evaporation (MAPLE) technique [21-23], 
based on the early work of Nelson et al. [36] that transferred intact DNA 
molecules from a frozen aqueous-DNA target by using pulsed laser energy, 
actually started as an alternative to spray coating of thin films for chemical 
vapour sensors [37]. 

MAPLE technique [21-23] is similar to the PLD technique; the only 
difference consists in diluting the material in a volatile non-interacting solvent 
further to be frozen, or mixing it with another solid which represents this time 
the matrix. By irradiating the prepared target with a pulsed laser beam, only the 
solvent/matrix absorbs the laser wavelength and thus the system is evaporated. 
The solute material is collected on a substrate placed in front of the target, while 
the solvent is pumped out or the solid matrix is pyrolysed. When applying 
MAPLE technique, one must be confident that the compound does not absorb 
the selected laser radiation; therefore, in the case of molecular compounds 
deposition by MAPLE, the laser wavelengths chosen have to be in the range 
where the functional compound does not have absorption maxima, respectively 
in the UV or UV-Vis range, and preferably not in the Vis or IR range. On the 
contrary, the chosen matrix has to absorb the laser wavelength; therefore this 
has to be verified by checking the matrixes spectra before performing any 
deposition experiment. Moreover, during the laser interaction with the target, 
the matrix and the compound to be deposited shall not photochemically or 
photothermally interact. It results that only the molecules of the appropriate 
material are collected on the substrate (Figure 2.1).  

Such a non-destructive technique accurately solves the deposition 
problem of complex chemical structures (organic and bio-organic molecules, 
inorganic coordination compounds, bio/polymers, cells, etc.) [21-23,38-60]. 
MAPLE technique provides a gentle mechanism of transferring small and large 
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molecular weight species or compounds possessing weak bonds (coordination 
complexes) from a condensed phase into the vapour phase.  

Zhigilei and co-workers carried out parametric investigations, both 
experimental and simulated MAPLE depositions [61-68]. They have simulated 
the mechanism of laser ablation and molecular dynamics [61-64] in MAPLE 
depositions and also experimentally investigated them in a group of papers [65-
68]. A surface clustering mechanism of a polymer-matrix system was proposed, 
with the solvent escaping the film while the polymer inflates [65] – 
rearrangement of the thin film after deposition. 

 
2.2.3.3 Perspectives of MAPLE deposition technique 

In the paper entitled “The Matrix-Assisted Pulsed Laser Evaporation 
(MAPLE) process: origins and future directions”, A. Pique describes the 
numerous advantages MAPLE technique has produced when used for the 
deposition of thin films of polymeric, organic and biomaterials for various 
applications [37]. Besides, another great advantage of MAPLE technique over 
PLD is the versatile tailoring of nanostructures. For example, instead employing 
complicated procedures to produce ZnO pixels using PLD and nano-patterning, 
by MAPLE technique it is possible to deposit Zn(II) complex and further to 
locally photodecompose it with a laser beam in order to obtain the ZnO directly 
on the thin film, while the remained Zn(II) complex may be washed out with 
solvent.  

Several new variations of MAPLE technique were proposed in the last 
years, especially for nano-functionalization and nano-patterning of advanced 
materials, this highly versatile and successful vapour deposition technique 
receiving increased attention, and its future as top research area being placed in 
the spotlight [37]. 

 

2.3 Thermal analysis and calorimetry techniques of interest and 

the standard procedure for heterogeneous kinetics 
 
The thermal analysis techniques belong to the group of experimental 

techniques that allow for the study and characterisation of samples (a single 
compound or composed of a mixture of compounds), by measuring a physical-
chemical quantity as a function of temperature [69]. Some of the measured 
quantities may be: the difference between the sample temperature and the one 
of the reference material (the differential thermal analysis – DTA), luminescence 
radiation intensity (the thermoluminiscent analysis - TLA), volume or thermal 
conductivity of gases (the evolved gas analysis - EGA), the current intensity or 
the electrical resistance (the conductometric analysis - AC), etc. 

Generally, any of the physical-chemical method of analysis may be 
assimilated in the class of thermal methods of analysis, if the parameter that is 
usually registered in isothermal conditions will be measured when the 
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temperature changes in time. Here will be presented briefly the thermal 
analysis and calorimetry techniques employed in this work. 
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Chapter 3 
 

Inorganic complex of zinc benzoate, precursor for 

ZnO: thermokinetic behaviour and thin films 

obtained by MAPLE technique 
 
3.3 Thin films of zinc benzoate obtained by MAPLE technique, its 

thermal behaviour and the non-isothermal kinetic study  
 
3.3.1 Zinc benzoate thin films by MAPLE technique 

 

Thin films of zinc benzoate have been obtained on Si substrates by 
MAPLE technique, following the procedure described in the previous section 
3.2. First, the experiments were carried out for a duration of 33 minutes (20,000 
laser pulses). For low laser fluences (e.g. 0.1 J·cm-2) there is no deposition to be 
found on the substrates, while when increasing laser fluence (Table 3.1, until 0.5 
J·cm-2 is reached), the Si substrates are not entirely covered, but the peak to 
valley roughness (RP-V) and root mean square roughness (RQ) values 
continuously decrease. The ablated and thus deposited material increases with 
increasing the fluence (from 0.7 to 1.3 J·cm-2), therefore thin films’ smoothness 
and continuity decreases (Table 3.1). 

The laser fluence of 1.0 J·cm-2 proved to transfer more material, but when 
analysing the obtained thin film, it revealed worse morphology compared to the 
sample obtained at 0.7 J·cm-2. When selecting the laser fluence of 1.3 J·cm-2, the 
obtained films look like already burned and with increased roughness and peak 
to valley values (Table 3.1), therefore this fluence seems to be much too high. 
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For doubling the deposition duration (40,000 pulses), at 0.5 J·cm-2 and 0.7 
J·cm-2 laser fluences, it was observed an increasing amount of deposited 
material. The double deposition timing for the 0.5 J·cm-2 sample led to a 
complete coverage of the Si substrates and a fine thin film formation. For 40,000 
laser pulses it results smother and more continuous surfaces, which form in the 
case of 0.7 J·cm-2 MAPLE deposition when the transferred material starts to fill 
the empty places and homogenizes the morphology (Figure 3.1a and 3.1b); peak 
to valley shortens from 927 nm to 660 nm and the roughness improves from 132 
nm to 97 nm. 

 
Table 3.1 Experimental MAPLE deposition parameters and thin films morphology  
(40 μm x 40 μm) results by AFM imaging 

Laser 

Fluence  

/ J·cm-2 

Laser 

Pulses 

RP-V  

/ nm 

RQ  

/ nm 

Observations 

0.1 20,000 - - no deposition 

0.3 20,000 772 101 disparate droplets deposition 
0.4 20,000 283 44 disparate droplets deposition 
0.5 20,000 268 13 several circular areas of deposition 
0.5 40,000 471 44 uniform circular area deposition 
0.7 20,000 927 132 uniform circular area deposition 
0.7 40,000 660 97 uniform circular area deposition 

1.0 20,000 807 129 
high amount of material and 
irregular deposition 

1.3 20,000 1187 202 
high amount of material and 
irregular deposition; burned aspect 
of the thin film 

 

Since the 20,000 laser pulses MAPLE deposition at 0.7 J·cm-2 proves to be 
the best one, doubling the deposition time seems to confirm, and therefore even 
improve the morphology of the zinc benzoate thin films. 

Bi-dimensional images of the morphology of the zinc benzoate thin films 
obtained by MAPLE technique at 0.7 J·cm-2 laser fluence for 33 minutes (20,000 
laser pulses) exhibit circular drops of around 20-25 μm in diameter, with 
increased amount of deposited material towards the edge of the circular drops 
(Figure 3.1c). While increasing the deposition time, the previously obtained 
circles tend to overlap, and finally (for 40,000 laser pulses) homogenizing the 
deposited area (Figure 3.1d). 

FTIR analysis of the zinc benzoate thin films has been performed. For 
those laser fluences that were able to transfer significant amount of material 
(according to the AFM images), the plot of absorption vs. wavenumber is 
presented in Figure 3.3. In this work, the FTIR spectra were recorded only to 
check the preservation of chemical composition after the laser induced transfer. 
It may be noticed that for the laser fluence of 0.5 J·cm-2, the deposited quantity 
of material is too low, therefore the absorption signals are too weak to be 
registered; while for increasing the laser fluences to 0.7-1.3 J·cm-2, the amplitude 
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of peaks increases (regions 1 and 2 in Figure 3.3). The FTIR absorption peaks 
respect the position acquired in the spectrum for the bulk zinc benzoate, and 
also those that have been previously reported [10,11].  

 

 
 

c 

 
D 

Figure 3.1 3D AFM images of zinc benzoate thin films by MAPLE (40 × 40 μm2), obtained at  
0.7 J·cm-2 laser fluence for a) 20,000 pulses; b) 40,000 pulses and 

2D AFM images of zinc benzoate thin films by MAPLE, obtained at  
0.7 J·cm-2 laser fluence for c) 20,000 pulses; d) 40,000 pulses 
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Figure 3.3 FTIR spectra of zinc benzoate thin films for fluences (0.5-1.3 J·cm-2) 

that transferred significant amount of material  

 
 3.3.2 Thermal analysis and kinetic decomposition studies of zinc 

benzoate dihydrate Zn(C6H5COO)2·2H2O 

 

Thermal analysis of Zn(C6H5COO)2·2H2O crystalline powder was carried 
out in both air and argon flow. Thermal decomposition studies of zinc complex 
compounds are important from the scientific point of view, for thermal stability 
determinations (the case of possible biological applications) and when using 
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them as precursors, for establishing the thermal and kinetic parameters of the 
decomposition process and zinc oxide growth. As it is well known from the 
literature, thermal decomposition and kinetics of such zinc complex crystals are 
determined by reacting conditions (various gaseous atmospheres) and 
moreover, very sensitive on the used heating rates, reacting duration and 
crushing pressures and durations [58-62]. 

The thermoanalytical curves for the non-isothermal decomposition of 
Zn(C6H5COO)2·2H2O, recorded at the heating rate of 10 K·min-1 are presented in 
Figure 3.4a (air flow) and in Figure 3.4b (argon flow). 

Two main stages may be noticed in both air and argon flow thermal 
experiments, similar one to the other; the first stage represents the elimination 
of two coordinated water molecules (dehydration process), while the more 
complex second stage represents the loss of organic parts and formation of 
ZnO.  

In the following section, 3.3.3, a short description of some non-isothermal 
kinetic methods, useful for this study, will be presented, since the current 
kinetic analysis requires a complex stepwise procedure for choosing and further 
employing them. 

 

 
a) 

 
b) 

Figure 3.4 Thermoanalytical curves for the thermal decomposition of 
Zn(C6H5COO)2·2H2O at β=10 K·min-1 in a) air flow and b) argon flow 
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3.3.3 Non-isothermal kinetics of heterogeneous processes 

 

3.3.5 Decomposition of Zn(C6H5COO)2 and formation of ZnO 

 
The thermal decomposition of zinc benzoate is a complex process in 

argon flow, and even more complex in air flow (Figure 3.4). While in argon the 
decomposition occurs in three steps (Figure 3.4b) – first two endothermic and 
the third exothermic, in air flow the first and the third step are initiated by 
gaseous oxygen and continued by the oxygen from inside the organic molecules 
(Figure 3.4a), when the system becomes activated and releases the 
intramolecular oxygen. The DSC and DTA curves in air flow identify the same 
first two endothermic reactions and split the third reaction into two exothermic 
steps. 
 The three proposed decomposition reactions are similar to those 
proposed by several authors [59-62] for the thermal decomposition in inert 
dynamic atmosphere of zinc acetate: 
 

3/4 Zn(C6H5COO)2 � 3/16 (C6H5CO)2O ↑ + 3/16 Zn4O(C6H5COO)6 (reaction 1) 
3/16 Zn4O(C6H5COO)6 � 3/4 ZnO + 9/16 (C6H5)2CO ↑ + 9/16 CO2 ↑ (reaction 2) 

1/4 Zn(C6H5COO)2 �  1/4 ZnO +  7/2 CO2 ↑ + 5/2 H2O ↑ (reaction 3) 
 

The first reaction represents the loss of (C6H5CO)2O (15% mass loss) and 
the formation of Zn4O(C6H5COO)6, stable at those temperatures. This reaction 
represents only ¾ of the decomposition of zinc benzoate, while the second 
reaction (42% mass loss) represents the decomposition of solid 
Zn4O(C6H5COO)6 to the more stable ZnO and happens in a narrow temperature 
range. The rest of ¼ ZnO forms at the end of the third reaction, when the high 
temperatures led to the combustion of organic gases to CO2 and H2O. A residue 
of 22% representing ZnO is found for the argon flow case, while in the case of 
air flow only 20% remain.  
 Figures 3.7 and 3.8 show the variation in activation energy with the 
conversion degree towards the formation of ZnO from the thermal 
decomposition of zinc benzoate, in air and in argon flow respectively. The 
evaluation was done using the TKS-SP software [100,104], with α step of 0.01, 
while obtaining the activation energy with correlation coefficients greater than 
0.98800 for both air and argon studies. 

For the argon flow experiments, the first reaction has a decreasing 
activation energy from 320 kJ·mol-1 to 180 kJ·mol-1 (at α=0.28), followed by a 
small increase in the activation energy up to 210 kJ·mol-1 (at α=0.35) – Figure 3.8. 
In air flow, the reaction initiates with the oxygen from the air, results in the 
activation energy being lower, this time decreasing from 270 kJ·mol-1 to 135 
kJ·mol-1 (at α=0.28), and it is followed by a severe increase to 170 kJ·mol-1 (once 
more at α=0.35) standing for the intramolecular oxygen reaction – Figure 3.7. 
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Figure 3.7 Isoconversional activation energy for the non-isothermal  

decomposition process of Zn(C6H5COO)2 in air flow 
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Figure 3.8 Isoconversional activation energy for the non-isothermal  

decomposition process of Zn(C6H5COO)2 in argon flow 
 

The beginning of the second reaction at α=0.35 (start of constant 
activation energy) in both cases indicates that the first reaction offered the same 
products actually, independent on the source of consumed oxygen. As well, 
being constant in the range of α=0.35-0.85 (air flow) and between α=0.35-0.75 
(argon flow), the activation energy indicates together with the DTG curve a 
simple process for the second reaction: ĒKAS=175 kJ·mol-1 (air flow) and ĒKAS=215 
kJ·mol-1 (argon flow). The difference in activation energy of the second reaction 
may be explained as a supplementary effort the system has to overcome in the 
absence of the external oxygen (argon flow) in order to complete the reaction. 
Since the activation energy of the third reaction in argon flow is lower and even 
decreasing, it begins earlier, at α=0.75. The shape of the activation energy 
variation of the third reaction is similar for both air and argon flow cases, 
indicating the same reaction, regardless of atmosphere; thus independent of 
implied oxygen. As well, its profile is almost identical to the first reaction one, 
the trough-like shape being one more indication of zinc benzoate 
decomposition. 
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 The results of IKP method (Table 3.5) are identical with the average 
values of isoconversional activation energies by KAS method, although 
obtained with less confidence.  
 

Table 3.5 Invariant Kinetic Parameters for ASKM (CR method) 

Atmosphere 
Einv 

 kJ·mol-1 

lnAinv 

A/s-1 

rinv 

Air flow 174.1 26.414 0.97583 
Argon flow 212.2 31.412 0.97612 

 
 Due to the complex process (3 chemical reactions), the Master plots 
method requires the exact knowledge of initial and final conversion degrees 
and therefore cannot be used in this case. Perez-Maqueda et al. criterion can 
discriminate between conversion functions, even using only parts of the 
process. Since the complexity of the process is not suitable for kinetic 
predictions, this criterion is powerful enough to indicate the activation 
parameters (E,A) and can prove their constancy with respect to the heating 
rates.  
 
Table 3.6 Perez-Maqueda et al. kinetic parameters (CR method) 

Atmosphere Kinetic 

Model 

E 

 kJ·mol-1 

lnA 

A/s-1 

r 

Air flow P1/3 175.3 24.955 0.99366 
Argon flow P1/3 218.8 31.185 0.99629 

 
 Table 3.6 presents the kinetic parameters of the second reaction within 
the process, obtained with increased accuracy. The activation energies are those 
expected and the conversion function remains the same for both types of 
experiments. The obtaining of unchanged conversion function with the 
employed atmosphere is a great achievement, to be discussed in the followings.  
 For the third reaction, the evaluation of all kinetic parameters is 
impossible due to the small amount of zinc benzoate that was left to decompose 
(1/4 Zn(C6H5COO)2), and which anyway has a variable isoconversional  
activation energy. 
 
3.3.6 Obtaining ZnO by thermal treatment of the zinc benzoate thin films 

  

The thin films of Zn(C6H5COO)2 obtained by MAPLE technique have 
been thermally treated in static air atmosphere inside a muffle furnace, from 
room temperature (r.t.) to 650 °C, while heating with the rate of 1 K·min-1. After 
reaching 650 °C, the samples were left in the furnaces to cool down to r.t. 

 

After thermal treatment, the thin films shrink, becoming much smoother 
– the peak to valley roughness (RP-V) reduces 3 times, from 927 to 312 nm, and 
RMS roughness (RQ) decreases 5.5 times, from 132 to 23 nm (as marked in 
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Figure 3.11 with black and white pentagonal signs). This result is somehow in 
accordance with the ~20% ZnO that remain as final product of the thermal 
decomposition.  

In Figure 3.12, the SEM images for the thin films obtained after thermal 
treatment (processed at 0.5 J·cm-2 – Figure 3.12a,  and at 0.7 J·cm-2 – Figure 3.12b, 
for 40,000 laser pulses each) are presented. Both thin films are well covered, 
have a smooth appearance, but the one at 0.7 J·cm-2 is more compact [106,107]; 
this is also confirmed by the SEM image of the cross-section (Figure 3.12c) [107].  

 

 

 
Figure 3.12 SEM images on the calcinated zinc benzoate samples, deposited by MAPLE at a 

fluence of 0.5 J·cm-2 (a), and at 0.7 J·cm-2 (b). Both samples were deposited for 40 000 laser pulses. 
The cross-section image (c) is on a sample deposited at 0.7 J·cm-2. 

 
For the MAPLE deposition conducted at a fluence of 0.7 J·cm-2 and 40,000 

laser pulses, the thickness of ZnO deposited layer obtained after calcination is 
approximately 5.5 μm (Figure 3.12c). Since the ZnO thin film in Figure 3.12c is 
compact and continuous (a similar example in Ref. 106), it is not possible to 
make any assumption regarding its growth mechanism – during MAPLE 
deposition of the zinc benzoate precursor, or during the thermal treatment. 
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Chapter 4 

 
Organic azo-derivative dyes with liquid crystalline 

properties: thermokinetic behaviour and thin films 

obtained by MAPLE technique 
 

4.4 Summary of Chapter 4 
 

After the introductory part for the azoic dyes with liquid crystalline 
properties and possible applications, in this chapter two main parts were 
discussed: i) the first part was dedicated to the compound 4CN (4-[(4-
chlorobenzyl)oxy]-4’-cyano-azobenzene), and ii) the second part was dedicated 
to the compound CODA (4-[(4-chlorobenzyl)oxy]-3,4’-dichloroazobenzene). In 
the first part, for the 4CN azoic dye, the thermal analysis of the phase 
transitions and decompositions (TG-FTIR, DTG, DTA, DSC, HS-OMPL), the 
kinetics of the thermal decomposition, and the thin films deposition by MAPLE 
technique and physical-chemical analysis of the surfaces (AFM, SEM, FTIR) 
were investigated and discussed. The thermal decomposition and respective 
kinetic study confirmed two chemical reactions – the first one taking place by a 
complex mechanism, while the second one representing the burning of the 
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carbonaceous rests formed after the first reaction. The 4CN compound reveals 
several phase transitions at both heating and cooling which were evidenced 
during the study, by combining DTA, DSC and optical microscopy. Thin films 
obtained by MAPLE technique on Si and SiO2 are structured and exhibit 
evident differences determined by the substrate and laser fluence; it was shown 
that they also possess the initial chemical structure of the 4CN material. 

In the second part, for the CODA azoic dye, the thermal analysis of the 
phase transitions and decompositions, the kinetics of the thermal 
decompositions, and the nanostructures/thin films deposition by MAPLE 
technique, including the physical-chemical analysis of the surfaces (OM, AFM 
and FTIR) were investigated and discussed. The thermoanalytical study was 
performed in both air and argon flow atmospheres, revealing significant 
differences. Also, the thermal effects of the phase transitions were evidenced by 
DTA and DSC; they are in agreement with previous investigations regarding its 
liquid crystalline properties. The kinetic study of the two decomposition 
processes that take place in air – formation of heptafulvalene and its burning – 
are complex processes that may not be described by a unique kinetic model. For 
the first step, the activation energy generally increases with increasing the 
conversion degree, indicating parallel reactions; the activation energy trend can 
be separated into two regions according to the slope of the increase: up to α=0.3 
(EOrtega=97→135 kJ·mol-1) that may be related to higher contribution of the 
thermo-oxidative decomposition of CODA into intermediary compounds, and 
after α=0.3 (EOrtega=135→160 kJ·mol-1) that may be related to the higher 
contribution related to the formation of heptafulvalene. For the second step, the 
activation energy is quasi-constant; the activation energy stability region (α=0.2-
0.93) may be regarded as an indication of a singular reaction for the global 
combustion process of heptafulvalene, however the combustion of the product 
from the thermo-oxidative decomposition of CODA, namely heptafulvalene, 
seems to take place in a more complicated manner than it was expected: for the 
Ortega evaluation these values are affected most probably by the 
inhomogeneity of the material continuously changing composition during the 
combustion process. The results of applying the Perez-Maqueda et al. criterion 
are matching for the activation energy and the pre-exponential factor 
determined by IKP method, but are inconsistent for the unicity of the correct 
conversion function; when applying the Gotor et al. master plots method, the 
conversion function that provides a reasonable match for the experimental 
curves of the global combustion process of heptafulvalene by the theoretical 
representation is in this case F0.74, a result contradicting both P1.05 and A3.00 
models obtained previously by integral and differential procedures within the 
Perez-Maqueda et al. criterion. In the Gotor et al. master plots it was evidenced 
that the second investigated process is not described just by an unique kinetic 
model, but is actually composed of at least two main reactions that most 
probably are almost successive and overlapping to a certain extent and have 
their own mechanisms. Since the isoconversional activation energy is quasi-
constant in the stability region (α=0.2-0.93), it is very likely that the reactions 
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composing the second step take place with fairly similar activation parameters 
(E and A) – supported by the good linearity in the Perez-Maqueda et al. curves. 

By employing the MAPLE technique, nanostructures and thin film 
growth on Si substrates may be controlled by wisely changing the experimental 
parameters: laser energy, area of the laser spot and deposition time; the growth 
type is determined by the actual values of the energy and area of the laser spot, 
while the dimensions are determined by the deposition time. The chemical 
composition of CODA was preserved after the MAPLE transfer, the FTIR 
spectra of the deposited materials possessing all characteristic transmittance 
peaks of the initial material. 

 

Chapter 5 

 
Polymeric materials for optoelectronics:  

thermal behaviour and thin films obtained  

by MAPLE technique 
 
 

5.4 Summary of Chapter 5 
 
In this chapter, the thermal behaviour and matrix-assisted pulsed laser 

evaporation for thin film deposition of polymeric materials PVC (polyvinyl 
chloride), PAA (polyacrylic acid), PAni (polyaniline) are presented. Thermal 
analysis investigations led us to the conclusion that for the two dielectric 
materials, PAA and PVC, the maximal temperature to which they can be 
considered stable is around 200˚C, while for PAni this temperature is smaller, 
around 150˚C. Their thermal behaviour gives an inside glimpse into the way the 
laser irradiation may influence the thin film morphology during MAPLE: lower 
thin film roughness is observed when endothermic degradation processes of the 
compound are predominant. The best thin films of PVC, PAA and PAni 
obtained by MAPLE processing were reported here for the optimal 
experimental deposition parameters. Optical microscopy, AFM and SEM 
images reveal continuous and smooth surface for the thin films, with roughness 
in the range of 10-15 nm for PVC and for PAA, and ~50 nm for PAni. 
Spectroscopic ellipsometry analysis indicates thin film thicknesses in the range 
of 95-125 nm, consistent with AFM measurements. FTIR spectroscopy proves 
that complete preservation of the initial compound may be obtained when 
using certain solvents, proving that MAPLE is a suitable technique for polymer 
thin film growth with homogenous, controlled thickness. 
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Chapter 6 

 
Conclusions and further work 
 

In the last chapter of the present PhD thesis, the review of the most 
important results obtained and presented in this manuscript is discusses with 
respect to the the accomplishment of the initially proposed objectives. The 
further work to be carried out by the author in his future research activities 
related to this broad topic of investigation is also proposed here. 

The PhD thesis contains dedicated introduction and background 
description of the research topic tackled in this study. The theoretical aspects 
were clearly presented for the understanding required here, while the 
experimental methods were specified. 

A broad category of materials, namely: soft materials containing organic 
parts (inorganic coordination complexes, linear organic molecules and 
polymers) was investigated here in an attempt to interconnect the results of the 
thermal and kinetic studies, with those obtained for the thin film processing by 
MAPLE (matrix-assisted pulsed laser evaporation) technique. 

After discussing the obtained results through the manuscript, with main 
ones presented here above, it can be concluded that the main proposed 
objectives:  

i) finding the appropriate experimental parameters for the laser-based 

depositions;  

ii) successful employment of the matrix-assisted pulsed laser evaporation 

(MAPLE) for the fabrication of thin films of soft molecular materials;  

iii) obtaining reproducible and high quality thin films of inorganic, organic and 

polymeric soft materials of large interest for various applications;  

iv) characterisation of the thermal stability and understanding of the thermal 

properties of the soft materials employed;  

v) rigorous kinetic study and understanding the complexity of the 

transformations taking place through the entire temperature range;  

vi) determining the thermal processing conditions of some materials and of 

temperature ranges where they will be further employed; 

they were effectively approached and accomplished. 
 

 The results of this study, together with several issues that were not 
approached during this work, have opened a number of possible subjects for 
future research; emerging from the current study, some of them are presented 
in the followings: 
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- Investigation of other zinc coordination complexes from the thermal, kinetic 
and deposition points of view, in order to obtain thin films of ZnO after 
thermal treatment; 

- Use of pulsed laser deposition (PLD) technique directly for the deposition 
of ZnO (eventually) from zinc coordination complexes targets; 

- Advanced nano-structuring of CODA and 4CN compounds by several 
deposition techniques and development of direct applications. 

- Intercalation of several polymers as thin films obtained by MAPLE when a 
single target is employed. 

- A general MAPLE parametric study for soft materials containing organic 
parts, where different solvents and different concentrations shall be used 
during the MAPLE deposition. 
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